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Abstract

The 3-1 formulation of flexible rods with embedded line actuators is presented in this
paper. Both the rod and the line actuator are assumed to be initially curved and relatively
positioned in an arbitrary way. The deformed configurations of the rod and actuator are
connected by assuming that the principal planes of the rod remain plane and inextensible
in the deformed configuration. The resultant forces and moments in the rod and actuator
are found by solving the equilibrium equations for both the rod and actuator and applying
continuity of tractions on the rod-actuator interface. The formulation is reduced to 2-D and
applied to the case of a Shape Memory Alloy (SMA) fiber embedded in a cylindrical rod.
The deformed shapes of the rod under repeated thermal actuation and the resulting shape
memory loss due to the development of residual stresses are evaluated. Finally, the
inverse problem of finding the required actuation force and initial curvature, to acquire a
predetermined deformed shape, is solved in closed form for the 2-D case.
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Introduction

1.0 Introduction

The one way shape memory effect (Buehler and Wiley, 1965, McNichols and Cory, 1987,
Schetky and Wu, 1991) is associated with twinning induced permanent strain recovery
upon heating. Embedding of shape memory alloy (SMA) fibers in slender flexible bodies
results in shape changes of the host medium, whenever shape recovery of the SMA takes
place. There are two methods of embedding SMA fibers in flexible structures (Chaudhry
and Rogers, 1991). The prestrained SMA fibers are either inserted in a sleeve and then
clamped at both ends, or they are continuously bonded with the flexible structure. In the
first case the result is a point follower force applied at the ends, while in the second case a
distributed actuation force is applied from the fiber to the flexible structure. This paper
deals with modeling of the deformed shapes of flexible rods with continuously embedded
line actuators.

The shape change of a cylindrical rod with a single off-axis embedded SMA fiber has been
modelled in a recent paper by Lagoudas and Tadjbakhsh (1992). The distributed axial
compressive force and bending moment due to phase transformation in the SMA fiber was
evaluated using an approximate shear-lag model and the deformed shape of the rod was
found by numerically solving the equations of equilibrium for the rod. In this paper we
present the generalization of the theory to a flexible rod with a line actuator embedded in
an arbitrary location with respect to the centroidal axis of the rod. The equations of
equilibrium of the rod and actuator are derived in a systematic way for rods undergoing
large 3-D deformations (bending, twist and extension). An example is presented for the
case of a SMA fiber actuator undergoing repeated phase transformations between the
martensitic and austenitic phases, for which the shape memory loss and the reduction in
the actuation force are evaluated.

2.0 Kinematics of Flexible Rods with Embedded Line

Actuators

2.1 Reference Configuration of Rod and Line Actuator

A rod is described in the reference configuration by the centroidal line, C, that connects the
centroids of its cross sections and by the reference body orthonormal tnad E,, i = 1, 2, 3,
where E3 is the unit tangent vector to C and E,, F2 are aligned with the principal axes of the
cross-section (Fig. 1). The actuator is geometrically characterized by its center line, i.e. the
tangent vector to it. We will assume that the line actuator has no bending resistance and
as a result there is no need to select a body frame dictated by the principal axes of its
cross-sections. As it will become obvious later on, a natural choice for a body frame for the
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Kinematics of Flexible Rods with Embedded Une Actuators

actuator is the orthonormal tnad formed by the tangent vector to its center line, A, the
principal normal and the binormal to A (trihedral basis).

The position vector x of the line actuator in the reference configuration, with respect to a
fixed Cartesian coordinate system, is given in terms of the position vector . of the
centroidal line C of the rod by

X =X+P (EQ 1)

where D = d.Ec = d1E, + d2 . 2 is the position vector of the actuator relative to the centroidal
line C, as shown in Fig. 1. If n. i = 1, 2,3 is the orthonormal triad of the fixed coordinate
system, the reference body triad is expressed in terms of the direction cosines Lij by
g, = L,,(S)n,,, and eq. (1) reduces to

X = (Xi(S) + da(S)Lia(S)) ni (EO 2)

where S denotes the arc length along C. The relationship between the arc length Z along
the actuator A and arc length S along C is given by

1 d dX -dz 2  dD dD do-= -d--Z d- = (d') (1 + 2.E3 =- + -~ . - ) (EQo3)
dZ dZ - S 1 23'dS S

The above equation reduces to
dZ dI2 dd22

dZ (l-dK 2 +d 2 K 1)2 + (.d- -d 2K3 ) + ( - +dlK3 ) (EQ04)

where the curvatures, Ki, 1=1,2,3, of the reference shape of the rod are defined by

dE Kek(EQ 5)YS kjiKj-k
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Kinematics of Flexible Rods with Embedded Une Actuators

FIGURE 1 Reference Configuration of Rod and Line Actuator

X

n3

2.2 Deformed Configuration of Rod and Line Actuator

Assuming that in the deformed configuration the relative position of the line actuator with respect
to the body frame remains the same, the position vector of the deformed shape of the actuator is
given by

x = i+d (ES6)

x = (ji(S) + da(S)lia(S)) nif (EQ 7)

where i is the position vector of the deformed centroidal line of the rod, c, and the relative
position of the actuator is given by . = dj 8 (Fig. 2). The deformed body triad, e,, i = 1, 2,3, is
expressed in terms of direction cosines lij by f, = i.,4s)., .



Klinmwatic of Flexible Rods with Emnbedded Une Actuators

FIGURE 2 Deformed Configuration of Rod and Line Actuator

Xa

XB

AnZ2 n3

The deformed arc length z along the actuator is found in a procedure similar to the one used for
Z, with the only difference that the elongation of the centroidal line c has to be taken into
consideration, i.e.

d dX -2dz'dzd (•-A) (l+e)2+2 (I+e)E3. 4.d--S+ -- ) Im

dz dz dS WSe, is-d dsd

where the strain e is defined by

d- = (1+e)• 3  ("20)

Eq. (8) finally reduces to



Equations of Equilibrium for Flexible Rode with Embedded Une Actuators

dz ( dd1 2 dd2
- 1 (1+e-dlk2 +d2 k1 ) 2 + (W- -d 2 k3 ) + (j-- +dlk3 ) (EQ10)

with the curvatures, ki, i=1,2,3, of the deformed shape of the rod defined by

WS=kjk (EO 11)

3.0 Equations of Equilibrium for Flexible Rods with
Embedded Line Actuators

3.1 Equilibrium of Line Actuator

The vector form of the equations of equilibrium for the line actuator is

dF +f = 0 (EQ 12)

The internal force Fa in the actuator is tangential to its center line, i.e.

'F'= F, t (EQ 13)

where the tangent unit vector, L, has the evaluation

dx dz 1  ddi dd2
Zf= (d) (- 2k3) el+ (T-• +d 1 k 3)e 2 +(l+e-dlk2 +d 2 kl)efp#4)

The distributed force, .p, is applied from the rod to the actuator and is measured per unit
undeformed length of the actuator. If the trihedral basis is used to resolve the vector form
of the equations of equilibrium into components, the following set of two equations obtains
(equilibrium in the osculating plane)

dF4 + fa 0
d t (EQ 15)

F'k+f• -0 (EQ 16)

The actuator curvature, k, per unit undeformed length in eq. (16) is defined by
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Equations of Equilibrium for Flexible Rods with Embedded Une Actuators

4ý d dt (EQ 17)
dZ dZ

The distributed force has in general the following resolution in the osculating plane

t9 = ft t +Jnan (EQ 18)

where the principal normal vector is defined by (Sokolnikoff and Redheffer, 1966)

1 dt I dt dZ -1
- = j-S)(EQ 19)

kd32k dSdS

3.2 Equilibrium of Rod

The vector form of the equations of equilibrium of a flexible rod acted upon by a distributed
force, f, acting at a distance .4 from the centold, is (Love, 1944, Tadjbakhsh and Lagoudas,
1992)

d F + f = 0 (Eo 20)

dF

+ - xF+dxf = 0 (EQ 2•)
dS dS--

If we resolve the forces and moments in the body coordinate system, we have the
following set of six equations

dF1
£ +eiikkjFk +fi = 0 (EQ 22)

dMi
-~i+ Ck +j e 8iakdk =0 (EQ 23)
dS ijkkjMk ( + e) F +ij3 + iak

The explicit form of the equations of equilibrium is also given here for later reference

dF1 + (EQ24)

dS k2 F3 - k3F2 +fl = "

dF2
d-S k3 F1 -klF 3 +f 2 =0 (EQ2s)
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Equations oa Equilibrium for Flexible Rods with Embedded Une Actuators

dF3
- +IkF 2 -k 2 F 1 +f 3 =O (EQ 26)

dM1
- +k 2 M3 - k3 M2 - (1 + e) F2 + d2f 3 = 0 (EQ 27)

dM2
Y + k 3 M 1-k 1M3 + (1 +e)Fl-dlf3 = 0 (EQ 28)

dM3d--S + kM 2 -k 2 M 1 +dlf 2 -d 2fl = 0 (EQ2)

In the above equations F1 (s), F2(s) and F3(s) are the two shear forces and the axial force
in the rod, respectively; k,, k2, k3, are the two curvatures and the twist of the deformed
shape of the rod per unit undeformed length, respectively; K1, K2, K3, are the curvatures
and the twist of the undeformed shape of the rod in the reference configuration,
respectively. The moments of inertia of a cross section of the rod, with respect to the
principal axes, are denoted by 1l1 and 122, while the polar moment of inertia of the cross
section is denoted by 133.

The distributed force, f, applied on the rod from the actuator is connected through
Newton's third law to the distributed force, f-=, applied from the rod to the actuator (Fig. 3) by

f = (EQ 30)

Notice that to be able to find the components of/f in terms of the components of f, the
distributed force r = +.,n must be resolved in the body coordinate system.

6of30



Equatlone of Equflibrium for Flexibie Rode with Embedded Una Actuators

FIGURE 3 Distributed Forces Applied to the Rod and Line Actuator

If linear constitutive relations are used the three bending moments and the axial force are
related to the curvatures and extension by the following equations (Tadjbakhsh and
Lagoudas, 1992)

M1 = EI I (k 1 -KI) (Q031)

M2 = E122 (k2 - K2 ) (EQ 32)

M3 = G133 (k 3 -K 3 ) (EQ 3S)

F3 = AEe + E (111 kl (kll - K,1 ) + 122 k2 (k2 - K2) (- 034)

E and G are both material constants relating the difference in the curvatures with the
corresponding moments and can be approximately taken equal with the Young's modulus
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Equations of Equilibrium for FlOxible Rods with Embedded Urn Actuators

and shear modulus of the material of the rod. Eqs. (24-29) have to be solved for
F1, F2. e, kt, k2, k3 . If the rod is inextensible, i.e., e=O, eq. (34) is not valid any longer and F3

becomes an unknown variable replacing e in eqs. (24-29).

The connection between the curvatures and the body angles of rotation 4,f p1, 92f2, 4P 3

(Kane, Likins and Levinson, 1983), which bring the body triad from the fixed basis l,-!,- 63

to the deformed configuration et, I =, •6 is explicitly given by (Tadjbakhsh and Lagoudas,
1992)

do1 d(02.

k1 Ws- COS 2 Cos(0 3 + - sll(P3  (EQ35)

k d2 Cos (p3  I~ C s~ inl (EQ 36)
k2 =s 2 9s•3 - Ws cos(02sinP3 ,Q)

d(P3 d(P I
ds i (+ -37)

Similarly the connection between the reference curvatures and the body angles of rotation
401. Fl 0 323, which bring the body triad from the fixed basis n', PV n3 to the reference
configuration E,, E2, E3 is explicitly given by

d(D I d(D 2
K 1 =S 2 W Cos (D2Cos (1 3+-2 sir(3 (EQ 36)

K2 =d 2 cos(D) 3 -W O cos) 2 sin(D3  (EQ3n)

ds 3  d4ld3= + 1-1sn4)2 (,,o4o)

The position vector of the centroldal line of the rod is given in both the deformed and the
reference configurations, respectively, by

S S

= f (1 + e) 131d + il(O) = J(1 + e) sin(P2dS + (O) (EQ41)

0 0
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2-0 Sending of a Rod by an Off-Aide Une Actuator

S S

"2= (1 +e)1 32 d3+x2 (0) = -J(1 +e) sinplcos 2 dS+x 2(O) (E 42)

0 0

S S

"3= f (1 + e) 13 3 dS + i 3 (O) = (1 + e) cos(pI cos(P2 dS +X 3 (O) (E 43)

0 0

S S

"X1 = JL 3 1dS3+ 1(_ ) = JsincIEdS+Y1(O) (E 44)

0 0

S S

X2= L32dg + X2(0) - f sin, l coscl2 d3 + X2 (0) (EO 45)

0 0

S S

X3 =fL 33dS +Y30 f JCos(D1 ICos(D 2 d3 +,Y3(0) (E0 46)

o 0

In the case of an inextensible rod (e=O), eqs. (41-43) satisfy the constrain TS.Y- 1.

4.0 2-D Bending of a Rod by an Off-Axis Line
Actuator

For 2-D bending about e2 we assume that K, = K3 = 0 ( = (P3 = o. The position vector

of the deformed configuration of the actuator is given by

x = . +d1 (S)eI (E047)

and the tangent vector to its center line has the evaluation

d41dS l + (I +e-d k2).

- 2d1 (EO 48)

(1+ e - d1 k 2 )2 + (S)
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2-D Boening of a Rod by an Off-Axis Une Actuator

If we define

dd1

tandS(EQ 49
1 +e-dik

2

the tangent and principal normal vectors of the line actuator take the form

t = sinfe I + COSOC 3  (EQ 50)

p = Cosof 1 - sin¢_e3  (EQ 51)

The above formulation leads to the following evaluation of distributed forces and moments
on the rod

S-(cos (O) + sin ()) dZ(E0 52)
d-S

= -(cos (O))t4-sin(O).t) (EQ 53)

m2 =2 J2jdk = d, (cos (O)4- sin ()n) dZ(EQ54)

where from eq. (4) we have

d= (1 -dlK 2 )2+ dd12 55)

4.1 Line Actuator Placed Parallel to the Centroldal Line of a Straight Rod

The results presented in the previous section simplify in the case of an actuator embedded

parallel to the centroidal line of an initially straight rod. Since ! = o, eqs. (50,51) simplify
dS

to

t = e 3  (1( 56)

12030



2-0 Bending of a Rod by an Off-Axis Une Actuator

n = el (EQ S)

and the curvature of the actuator from eq. (19) becomes

k = k2 (EQ 5)

Finally, eqs. (52-54) reduce to (note that =0-- and dZ/dS=l)

fl = -j' EQ 59)

f3 =f t' (EQ 60)

m2 =-dlf3 (EQ 61)

If the above simplifications are taken into account, the equilibrium equations for the
actuator (15, 16) take the form

dFr
aS - f3 (EQ 62)

Fak2  fl (EQ 63)

while the equations of equilibrium for the rod (24 - 29) reduce to

dF1d-" +k 2F3 +k 2 F =0 
(EQ4)

dF3  dFa3
d3 -k 2 F 1 + d =0 

(EQ 0)

dM2  dF2a
S+ (I +e)Fl-d-dF = 0 (EQ66)

Eqs. (64-66) are the same with the ones reported in Lagoudas and Tadjbakhsh (1992),
except for the term •rw, which is not included there. This term becomes important for large
deflections with large bending curvature, while it can be neglected for cases with small
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2-0 Bending of a Rod Induced by an Embedded Shape Memory Alloy Fiber

resulting bending curvature. The kinematic relationships for the deformed shape, i.e., eqs.
(35-37, 41-43), likewise reduce to

k = d(P2  (EO67)

S
S= J ( + e) sinp2 dS + c,( 0) (EQ68)

0

S

S= f ( + e) cos(p 2 dS + T3(o ) (E 69)

0

The results derived in this section will be used to model the response of a rod to an
embedded SMA fiber upon attempted shape recovery of the SMA fiber due to the
martensitic-austenitic phase transformation.

5.0 2-D Bending of a Rod Induced by an Embedded
Shape Memory Alloy Fiber

Let a SMA fiber be prestrained while in the martensitic phase and embedded in a flexible
rod and bonded with the rod material in a temperature below Mf (Schetky and Wu, 1991,
Pfaeffle et al., 1992). Upon heating above Af, the martensite will transform to austenite and
the initial inelastic strain would be recovered, were it not for the constraint provided by the
rod. For a flexible rod with an off-axis embedded SMA fiber, such as the one shown in Fig.
4, the evaluation of the actuation force based on a shear-lag model has been given by
Lagoudas and Tadjbakhsh (1992). For completeness we summarize here the key results.

14 of 30



2-0 Bending of l Rod Induced by an Embedded Shape Memory Alloy Fiber

FIGURE 4 A SMA Fiber Embedded Off-axis in a Flexible Rod

FX2

The shear-lag equations of equilibrium are

da + 2 =C 0 0:5 S5 _L (EQ 70)
BE Pa r31 r= p

aar3 1

W +r Or3 =0 Pa<r<pdl (1071)

d p_ 2 a3_' = 0 0<_S<L (EQ72)
dS p-d 1 rI...

Eq. (70) gives the force equilibrium in the SMA fiber in the axial direction, eq. (71) is the
force equilibrium in the shear layer of thickness (p-d1) in the radial direction and eq. (72) is
the force equilibrium in the surrounding rod material in the axial direction. The constitutive
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2-0 Bendng l a Rod Induced by an Embedded Shape Memory Alloy Fiber

equations for the stresses in the fiber, a-, shear layer, ,, and rod material, a, are
respectively given by

dwa
(T Ea (jdS s (EQ 73)

=Gaw (EQ 74)

a E-4W~p (EQ 75)
d Eslr= p-dt t s

where wa(S) is the axial displacement of the SMA fiber and w(rS) is the axial displacement
of the surrounding rod material. E and G denote the moduli of the rod material, while Ea is
the Young's modulus of the fiber in the austenitic phase.

Combining eqs. (70-75), together with the condition of overall equilibrium of forces in the
axial direction, the final equation for the force in the SMA fiber, r = o.,, is found to be
(Lagoudas and Tadjbakhsh, 1992)

d2Fa - 2Fa = -samaoa 2  (EQ 76)

dS2  a

where

np2aEsma

Fsma = a (EQ 77)a 2
E + _Pa

Ea 2 2a - Pa

a 2  Ep2an((p- d)/pa) / a fa (E to

We will refer to Fa as the actuation force, because it is the driving force in eqs. (64-66) and
gives rise to the distributed force applied to the rod through eqs. (62, 63). As eq. (73)
suggests, e--, is the stress free recoverable transformation strain when the SMA fiber fully
transforms into the austenitic phase. Imposing boundary conditions Fa=0 at S=0 and S=L,
the following solution obtains for the actuation force

160o430



2-0 Bending of a Rod Induced by an Embedded Shape Memory Alloy Fiber

/ -axS e-a(L-S))

Fa(S) = Fmal e- +e-aL (E 7)

If the above evaluation of the actuation force is substituted into eqs. (64-66), these
equations can be solved for F1, e, k2 , and the deformed shape can be evaluated from eqs.
(67-69). We have solved equations (64-66) numerically using the shooting method, in a
similar way as described by Lagoudas and Tadjbakhsh (1992) for various boundary
conditions, geometric and material parameters.

5.1 Simply Supported Rod with an Off-Axis Embedded SMA Fiber

As an illustrative example, and to present a method for finding the deformed shape of a rod
with an embedded SMA fiber undergoing repeated phase transformations, we report the
case of a simply supported rod, shown in Fig. 5, with an off-axis embedded SMA fiber.

FGURE 5 A Simply Supported Rod with an Embedded SMA Fiber

L

X3

pald=l/7 E/Ea=1/20 Ssa---4%

P2/d=10/7

The boundary conditions for the simply supported case are given by

x1 (0) = k2 (0) = F3 (0) = 0 (0 80)
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2-D Bending of a Rod Induced by an Embedded Shape Memory Alloy Fiber

x 1 (L) = k2 (L) = F3 (L) = 0 (EOS1)

The initial stress free straight configuration is assumed to occur while the SMA fiber is in
the prestrained martensitic phase before any shape recovery takes place. When heated
above the phase transformation temperature, Af, the SMA fiber transforms into the
austenitic phase, attempting to recover its original shape before prestraining. The
deformed shape of the rod has been evaluated for material and geometric parameters
shown in Fig. 5 with initial prestrain of the SMA fiber Esma = -4%. We have assumed that
the austenitic phase behaves linearly elastic with E/Ea=I/20. The stress state in the SMA
fiber is indicated schematically as state 1 in Fig. 6, and the resulting deformed shape and
curvature are plotted in Figs. 8 and 9, respectively. For the numerical solution of eqs. (64-
66) the rod has been assumed centrally inextensible, which is a valid assumption for SMA
fibers with small diameter compared to the diameter of the rod.

181f30



2-0 Boening of a Rod Induced by On Embedded Shape Memory Alloy Fiber

FIGURE 6 Constitutive Behavior of Austenitic and Martensitic Phases

(Ta y ....................................

austenite

-1sma30
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2-0 Bending of a Rod Induced by an Embedded Shape Memory Alloy Fiber

If the prestrain of the SMA fiber is large enough, the actuation force may reach the yield
limit of the austenitic phase, ay, which is actually the starting point of stress induced
martensitic transformation (Schetky and Wu, 1991). The condition for yielding is given by

Fa-Ealtp2dlk2 = 7p2aa (EQ 82)

The I.h.s. of the above equation, normalized by a', is plotted in Fig. 7 below. The

normalized value on the r.h.s. is approximately equal to the ratio (J//(-e)a). We can

therefore conclude for this case from Fig. 7 that, in order not to have yielding at any point
along the SMA fiber, the yield strain of the martensite must be at least 0.6 of the prestrain,
or 2.4%.

FIGURE 7 Normalized stress in the SMA fiber

SigmaSMA

0.5

0.4

0.3

0.2

0.1

0 10 20 30 40 S/dl

If yielding occurs in the SMA fiber, we assume that shear-lag model is still valid and the
actuation force can be found from eq. (79) but with the replacement of eq. (77) by

psma = Eanp2r a+dk2(L (EQ 83)
a a aEa o E 2

The above equation implies a perfectly plastic model for the austenitic phase, as shown in
Fig. 6, which is an experimentally verified valid assumption, due to the formation of the
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2-0 Bending of a Rod Induced by an Embedded Shape Memory Alloy Fiber

compliant stress induced martensite (Sato and Tanaka, 1988). The above procedure
requires an iterative solution scheme for the evaluation of the bending curvature in eq. (83).

After the rod cools down below Mf, and the SMA fiber returns to its martensitic phase, the
rod does not return to the initial straight configuration, but it has some residual curvature
due to residual stress development. To evaluate the actuation force in this case we
assume that, after the SMA fiber transforms to the martensitic phase in a volume
preserving transformation, it is stretched by the deformed rod until a new equilibrium is
established. Since the martensitic phase is much more compliant and with a lower yield
stress than the austenitic phase (Schetky and Wu, 1991), it yields giving rise to new
prestraining. To model the constitutive behavior of the martensite we use an elastic
perfectly plastic model as shown in Fig. 6, where the cool-down process is indicated by the
path 1-2. The assumption of a perfectly plastic model is reasonable because the inelastic
strain is mainly due to twinning stretching and to a lesser extent to dislocation motion with
a very small amount of hardening (Schetky and Wu, 1991).

The actuation force, Fm, in the martensitic phase is found by the shear-lag model
described by an equation similar to eq. (76) with the solution given by

Fm(S)=Fsma Il e-PS + e-( (L - S)(M1 + e-PL

with the following evaluation for the constants

p2
P2 2  G Ef(pd)P ( + p2p21 (EQ 05)

FSmma = 2 Emtp + d(k L (EQ8)
m M "'~ a -+d (EQ(2

where Em is the stiffness and amY is the yield stress of the martensitic phase. The
deformed shape of the rod corresponding to the martensitic phase is shown as curve 2 in
Fig 8 and the bending curvature in Fig. 9. For the martensitic phase we have used E/EM=1/
6 and amY/Em=0.01.
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2-0 Bending of a Rod Induced by an Embedded Shape Memory Alloy Fiber

FIGURE 6 Deformed Shape of a Rod Under Cyclic Actuation of the Embedded SMA Fiber
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FIGURE 9 Bending Curvature of a Rod Under Cyclic Actuation of the Embedded SMA Fiber
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2-0 Bending of a Rod Induced by an Embedded Shape Memory Alloy Fiber

To model subsequent cycles, the transformation strain has to be corrected to include
residual stresses in the SMA fiber after transformation from austenite to martensite at the
end of process 1-2. The new transformation strain, e'", is given by the initial
transformation strain reduced by the residual elastic strain of the SMA fiber, i.e.,

sma= d k 2  (EQ 87)
Sm

Substitution from eq. (84) into the above formula results in

-sm sa sma e( eP ( L - S)I
Csma(S) = esma +dk 2(S) F2Em 1 - 1 +me-IL5L (EQ 68)

am M+e

Far away from the ends, the above formula reduces to a simple one

(3Y
-sma(L sma m

"" -ma (EQ 89)
Em

Utilizing eq. (88) for the shape memory loss, the deformed configuration and bending
curvature of the rod is evaluated and shown as curves (3) in Figs. 8 and 9, respectively.
Subsequent cycles will not influence the residual stress state and the rod will be deforming
between states (2) and (3).

As a final note and to bring some connection with tho composite rod theory, we rewrite
eqs. (64-66) in the following form

dF +
- +k 2 (F 3 + F) = 0 (EQ 90)

d •F 3 + F) - k2 F1  0 (EQ91)

dS(M2 -dIFa) + (I =+e)FI (EQ0W

Away from the ends of the rod and for vanishingly small diameter of the SMA fiber, we have
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2-0 Sending of a Rod Induced by an Embedded Shape Memory Alloy Fiber

ma~ ro Egsa 72Esm
FaFSma = a 2  sma93)a 2 a a

E + _Pa

Ea p 2  2

If we consider the actuation force as an internal force for the composite rod-SMA fiber
system due to the phase transformation strain, we could absorb the actuation force in the
constitutive equations (31-34), i.e.,

M2 = E12 2 (k 2 - K2 ) + dI (ntp2aEa sma) (Eo %)

F 3 = AEe + E (Ilk, (kI - KI) + 12 2k 2 (k 2 -K2 ) tp2 Ea sma (EQ'

in which case the equations of equilibrium become

dF 1

YS+ k2 F3 = 0

d-- -k 2 Fl = 0 (EO97)

d-- +(1 +e)F =0 
(E 9)

For small curvature and extension, equations (94-98) reduce to the classical composite
beam equations (Allen and Haisler, 1985). The shear-lag model, therefore, in the case of
line actuators is compatible with the composite beam theory and in addition takes into
account the end effects.
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Inverse Problems

6.0 Inverse Problems

Equations (64-66) can also be thought of as differential equations for the actuation force,
Fa, provided that the bending curvature is known, i.e., a desirable deformed shape is
specified a priori. In the case of inextensible rods, the system of equations (64-66)
becomes linear in F1 , F3 , and F3 and it can easily be integrated. Before we go into the
solution of the inverse problem in general, we give the solution to a special case below.

If we eliminate F3 between eqs. (64) and (65), in the process Fa gets also eliminated and
we end up with

d ldF1,-- +k 2F 1 = 0 (EQ 99)

which has the general solution

F1 = ClCos p2 + C2 sin 9 2  (EQ 100)

where C1 and C2 are arbitrary constants. Substitution of F1 into eq. (64) yields

F3 = _ Fa + C1 sin 92 - C2cos P2  (EQ 101)

To obtain M2 we substitute eq. (100) into eq. (66) which reduces to

dM2  dFa
d -d- = -(1 +e) (Clcos(P 2 +C 2 sin(P2 ) (EQ 102)

Integration of the above equation yields

M 2 -diFa = - CX 3 -C 2x 1 + C3  (EQ 103)

where C3 is a constant of integration. Considering moment equilibrium of a segment of the
rod we arrive at the following result

M2(S) = d 1F;(S)- P 3 (iI(L)-xI (S)) + PI (i 3(L) -i 3(S)) + T2  (EQ104)

where P = P101 + P30 3 is the externally applied force at S=L and T = T20 2 is the applied
moment at S=L. If sufficient boundary data are known eq. (104) can be utilized to correlate
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the actuation force with the deformed shape. In the case of a free-free end, F1=0 at S=0
and S=L. Hence from eq. (100) C1=C2=0. Also M2 =0 and Fa =0 at S=0 and S=L and from
eq. (103) C3=0. Eqs. (101) and (103) simplify in this case to

F3 = -Fa M2 = E122 (k2 -K 2) = dlFa (EQ1IOM

The above simple solution indicates that if a desired shape is sought, the required
actuation force is proportional to the difference of the bending curvatures in the deformed
and reference states.

For more general boundary conditions, the following procedure can be followed for the
solution of the inverse problem. If we assume e - 0 (centrally inextensible rod),
differentiating eq. (66) twice and substituting from (64, 65) leads to

d (d2M2 dM2 + (2/k 2) +k (EQ 106)"Y'Sd-f S k2 ) + k2-Y-- &Z -dS2m2 =01F o)

where m2=-dlf3 . If we substitute for M2 from eq. (32) and define, A2 = - 2 , the above
equation yields El22

(d 2  k 2k2d(k2_K2) d( 2 +k 2 h2  0 (EQ,07)
_Sd _ 2dS B 2 ) 2

This equation is a third order nonlinear o.d.e for the bending curvature k2 . Notice that while
eq. (104) was derived by integrating the equations of equilibrium (64-66), eq. (107) is
obtained by differentiating them.

For the solution of the direct problem, where the distributed actuation force is given and the
induced deformation is sought, eq. (107) or equivalently eqs. (64-66) are solved
numerically using the shooting method (Lagoudas and Tadjbakhsh, 1992). Eq. (107) can
be primarily utilized to solve in closed form two inverse problems:

1. Inverse Problem (a): Find m2 for given k 2 and K2 along the rod.

2. Inverse Problem (b): Find K2 for given k 2 and m2 along the rod.

For the first inverse problems eq. (107) is a linear second order o.d.e. for ,i 2 with variable
coefficients. The homogenous solution is given by
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S
h2 = D1 sin (k 2 dS + D2 cos Jk2dS (EQ 10)

0 0

The particular solution can be found using the method of variation of parameters. If the
initial curvature is zero, in which case eq. (107) reduces to

dh2 _A (d 2 k 2)

d(2  +k2 (Lk2 dI ,,~ I (EQ 109)
dS •S /k 2) + k2h2 =-dS dS A2 + 2k2

We can write the general solution of eq. (109) in the following compact form

m2= -0fg(S)Cos (0(S)- 0(S)) dS + D 1 sinG(S) + D2 cosh(S)) (EQ 110)

where g(S) and 0(S) are given by

d2k 1

2 2 (EQ 111)

(EQ 112)

S

B(S) = fk 2dS (EQ 113)

0

The two constants D1 and D2 are found by satisfying appropriate boundary conditions. As
an example, for a simply supported rod, -L<S<L, eq. (110) reduces to

L S

&2 g(g) Cos (9(g) _ 9(L)) dg _ d4 k(L) si OS)~2 -Jg(3) Cos (0(9) -O(S)) d3 (EQ 114)(f d i () f
0 0

As special cases we report certain closed form solutions for the first inverse problem. If the
final bending curvature is given by

1~ S
"k2 = kocos (nTL) (E0115)
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the required distributed bending moment to produce the above curvature from the initial
straight configuration is found to be

rn2 -L sin (n ) (EQ 116)

A parabolic curvature

k2= k0 1-S-)(EQ 117)

requires a linear distributed bending moment given by

2koS
m2 -= L 2 (EQ 118)

and a hyperbolic curvature

xs
k2 = k0 sech () (EO 119)

requires a distributed bending moment given by

A kko xS xS
mn2 = -Lseh(L) a (E (EQ 120)rn-L sch(-T)tanh(-i-)(=2o

In the above equations ko is a constant measuring the amplitude of the required curvature.
The value of the parameter ) measures the spread of the curvature, which a pproaches a
delta function as X becomes large.

A particular case of the first inverse problem arises, when the deformed configuration of
the rod is required to be straight, i.e., k2=O. Eqs. (64-66) reduce in this case to

dK2
r2 = -S (EQ 121)

The above equation suggests that the integral of the distributed bending moment is the
required initial curvature to produce a straight deformed configuration.
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To solve the second inverse problem we introduce the new dependent variable
A d (k2-K2) and eq. (107) takes the form

dS (
d(d_•/k2) + k2A ,di-d^2 A., 12

= -d'Žk 2  dk SA-/k 2 ) + k2 mn2) (EQ 122)

The above equation has the same form with eq. (109) and can be solved in exactly the
same way with eq. (109) of the first inverse problem.
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